

Technical Document

NiagaraAX FlexSerial
Driver Guide

Updated: June 12, 2008

NiagaraAX FlexSerial Driver Guide
Copyright © 2008 Tridium, Inc.
All rights reserved.
3951 Westerre Pkwy, Suite 350
Richmond
Virginia
23233
U.S.A.

Copyright Notice
The software described herein is furnished under a license agreement and may be used only in accordance with the
terms of the agreement.

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior written consent from Tridium, Inc.

The confidential information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and is not to be released to, or reproduced for, anyone else; neither is it to be used for reproduction of
this Control System or any of its components.

All rights to revise designs described herein are reserved. While every effort has been made to assure the accuracy of
this document, Tridium shall not be held responsible for damages, including consequential damages, arising from the
application of the information contained herein. Information and specifications published here are current as of the
date of this publication and are subject to change without notice.

The release and technology contained herein may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Trademark Notices
BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning
Engineers. Microsoft and Windows are registered trademarks, and Windows NT, Windows 2000, Windows XP
Professional, and Internet Explorer are trademarks of Microsoft Corporation. Java and other Java-based names are
trademarks of Sun Microsystems Inc. and refer to Sun's family of Java-branded technologies. Mozilla and Firefox are
trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of
Echelon Corporation. Tridium, JACE, Niagara Framework, NiagaraAX and Vykon are registered trademarks, and
Workbench, WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services
mentioned in this publication that is known to be trademarks, registered trademarks, or service marks are the property
of their respective owners. The software described herein is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

June 12, 2008 © 2008 Tridium, Inc Page 3 of 24

NiagaraAX FlexSerial Driver Guide
June 12, 2008
This documents usage of the FlexSerial driver for the NiagaraAX framework.

FLEXSERIAL DRIVER OVERVIEW..4

INSTALLATION...4

MESSAGE DEFINITION CONCEPTS..4
FlexMessageElement ...4
FlexMessageBlock...4
FlexMessage ..4
Message Framing...5
Defining FlexMessageElements ..5

FlexMessageElement Properties ...5
FlexMessageElement Encode property usage ...7

Defining FlexMessageBlocks ..8
Defining FlexMessages..8
Checksum or CRC Message Element ..8
FlexRequestResponse component ...8
FlexRequestMessage component...8
FlexResponseMessage component ..9
FlexUnsolicitedMessage component ...9
FlexSendMessage component..10
SerialRequest component ..10
SerialSend component ...11

UNSOLICITED MESSAGES...11

NOTES ON BUILDING MESSAGES...11
Naming of Elements ..11
Updating Message Instances..12
Show Instance Action ..12
AsciiHex Encode with showAscii Facet..13

EXAMPLES ...14
Modbus RTU Protocol...14

Define Message framing in FlexSerialNetwork...14
Define Crc message block..15
Define a PingMessage ...16
Define a PingResponse Message ...17
Create a FlexSerialDevice and define its PingMessage..17

Define the PingMessage Request message ..18
Define the PingMessage Response message..18

Control Points and FlexProxyExt Usage...19
Define Read Holding Register Message ..19
Define Read Holding Register Response Message..20
Create a NumericWritable Point and Setup PollMessage..20
Define a Write Holding Register Message ..21
Define a Write Holding Register Response Message ..22
Setup NumericWritable Point’s WriteMessage ...22

Add Message Validation to Response Messages...23

Modbus ASCII Protocol ..23
FlexWeatherStationExample ...23

DOCUMENT CHANGE LOG ...24

FlexSerial Driver Overview

The purpose of the FlexSerial driver is to provide a generic serial driver that can be configured to
communicate to a wide range of “simple” serial communicating devices. The driver allows the
user to model the native device message structures. This includes message framing detail and
message payload content. The message framing detail is pushed down to the low-level, send and
receive processing threads, so that properly framed messages can be sent and received. Once
messages have been defined, they can be assigned to request-response pairs that then, can be used
in components that require communications to a device.

Installation
To use the NiagaraAX FlexSerial driver, you must have a target host that is licensed for
“flexSerial”. In addition, other device limits or proxy point limits may exist in your license.

From your PC, use the Niagara Workbench 3.n.nn installed with the “installation tool” option
(checkbox “This instance of Workbench will be used as an installation tool”). This option installs
the needed distribution files (.dist files) for commissioning various models of remote JACE
platforms. The dist files are located under your Niagara install folder in various revision-named
subfolders under the “sw” folder.

Apart from installing the 3.n.nn version of the Niagara distribution files in the JACE, make sure to
install the flexSerial module too (if not already present, or upgrade if an older revision). For more
details, see “About the Commissioning Wizard” in the JACE NiagaraAX Install and Startup Guide.
Following this, the station is now ready for flexSerial software integration, as described in the rest
of this document.

Message Definition Concepts
 This section discusses the message definition terminology as used in defining native device
message structures within the FlexSerial driver.
A native device message is modeled as a FlexMessage. A FlexMessage is defined as a collection
of FlexMessageBlocks and FlexMessageElements. A FlexMessageBlock is defined as a collection
of FlexMessageElements.

FlexMessageElement
The FlexMessageElement is the basic building block for defining a FlexMessage. A
FlexMessageElement is used to define a single element of a message. FlexMessageElements are
used to define FlexMessageBlocks and FlexMessages.

FlexMessageBlock
A FlexMessageBlock is used as a wrapper for a collection of FlexMessageElements, which can
then be use in the definition of multiple FlexMessages.

FlexMessage
A FlexMessage is used to model a complete native device message. It is defined by a collection of
FlexMessageBlocks, and FlexMessageElements. Once defined the FlexSerial driver will have
enough information to generate a serialized byte array that can be sent to the serial port and to also
decode a serialized byte array that has been received from the serial port.

June 12, 2008 © 2008 Tridium, Inc Page 4 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 Message Framing

Message Framing
All serial protocols must have a way to define how a message begins and ends and is usually
common to all messages. Typically it is defined as a sequence of one or more fixed byte values,
but this is not always the case. The FlexSerial driver supports the definition of the message
framing detail with special “frameStart” and “frameEnd” FlexMessageBlocks and a
“maxReceiveSilentTime” property of the FlexSerialNetwork.
 If a message always begins with the same sequence of bytes, this collection of bytes is defined in
the “frameStart” FlexMessageBlock. If a message always ends with the same sequence of bytes,
this collection of bytes is defined in the “frameEnd” FlexMessageBlock. In some cases a message
frame is defined by silent time on the serial port. In this case, the silent time in milliseconds is
defined in the “maxReceiveSilentTime” property of the FlexSerialNetwork and the frameStart and
frameEnd FlexMessageBlocks are left undefined.

Defining FlexMessageElements
As previously stated FlexMessageElements are used to define FlexMessageBlocks and
FlexMessages. The purpose of the FlexMessageElement is to completely define a primitive
element of a message. It must contain enough information to serialize this element value to and
from a native byte array. The FlexSerial driver provides a special view and editor that can be used
to create FlexMessageElements.

There are six different types of FlexMessageElements. They are:

1. FlexByteElement – defines a single byte message element.

2. FlexWordElement – defines a 2 byte message element.

3. FlexIntegerElement – defines a 4 byte message element.

4. FlexFloatElement – defines a 4 byte IEEE floating point element.

5. FlexStringElement – defines a string element. It uses facets to define exactly how the
string is stored.

6. FlexMarkerElement - a marker is a special named place holder and consumes no space in
the message but defines an offset into the message. “cksumStart” is a special named
marker that defines the message offset at which checksum calculation starts. It defaults to
0 if this marker is not defined.

Each of the six FlexMessageElement types is a component, and has properties as discussed in the
next section, “FlexMessageElement Properties”.

FlexMessageElement Properties
Common among all FlexMessageElement component types are properties listed in Table 1.

Table 1 FlexMessageElement properties

Properties Descriptions
name user defined name for this message element. Unique names for use across different

message blocks are recommended (See “Notes on Building Messages” on page 11).

offset byte offset of this message element in parent FlexMessageBlock or FlexMessage.
Information only, automatically calculated.

size byte size of this element. Information only, automatically set based on dataType.

June 12, 2008 © 2008 Tridium, Inc Page 5 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 Defining FlexMessageElements

Properties Descriptions
dataType Data types supported are byte, word, integer, float, string, and marker.

byte: a single byte (8 bits) of data
word: two bytes of data
integer: four bytes of data
float: a four byte IEEE floating point number
string: string data can be variable length. It uses the facets property to define exactly
how string is stored.
marker: a marker is a special named placeholder and consumes no space in the
message but defines an offset into the message. “cksumStart” is a special named marker
that defines the message offset at which checksum calculation starts. It defaults to 0 if this
marker is not defined.

value The actual value of this data item, and is dependent on the dataType specified. The value
can be a constant or an indirect value from the object defined by the source property.
NOTE: If entering a constant, it must be in decimal format, regardless of “encode” property
setting. Often, a calculator or conversion chart is useful when building message elements.

encode To select special encoding used. Primarily, this applies to the encoding of received
(Response) messages. Encodes supported are none, ascii, and asciiHex, where:
none: No special encoding is applied, raw binary.
ascii: The value data is converted to an ascii string.
asciiHex: The value data is converted to an ascii hex string.
NOTE: See “FlexMessageElement Encode property usage” for details about encode in
Request and Response Message operation, which varies by FlexMessageElement type.

facets This is used to define other special name-value pairs used to support this message
element. The following is a list of facet name-value pairs that are used by the FlexSerial
driver
“bigEndian”- boolean: defines how multi-byte numeric values are placed in the byteArray.
“activeValue”- integer: defines the numeric value used to represent a boolean active

value in the byteArray.
“inactiveValue”-integer: defines the numeric value used to represent a boolean inactive

value in the byteArray.
“padWidth”-integer: used with strings to define a value to be used to pad out a fixed

length string message element.
“nullTerminate”- boolean: used with strings to define that the string value is terminated

with a null character.
“fieldWidth”-integer: used with strings to specify a fixed length string message element.

The padWidth facet defines the value used for padding.
“trueText”-string: used with boolean values and ascii encoding.
“falseText”-string: used with boolean values and ascii encoding.

source This is an ord that points to another value within the station database. The value of this
source object will be copied into the value of this message element. If the source is null,
then the value of this message element will be a constant.
Special consideration for Program object source. If the source is a Program object, it is
assumed that the Program object is used to calculate an error-check message element
value such as a checksum or CRC value. See the “Checksum or CRC Message Element”
section for related details.

exposeInParent This is a boolean value and is used to cause this message element’s value to be exposed
as a slot in the parent FlexResponseMessage

June 12, 2008 © 2008 Tridium, Inc Page 6 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 Defining FlexMessageElements

FlexMessageElement Encode property usage
Among the properties of any FlexMessageElement type (see Table 1 for properties) is an “encode”
property. Three selections are available: “None”, “Ascii”, and “AsciiHex”. Usages are described
below in Table 2 by FlexMessageElement type, in Request and Response Messages.
Table 2 FlexMessageElement encode property usage with Request and Response Messages

Encode FlexElement
Type

Request Message Response Message

String Writes string value. Uses
fieldWidth, nullTerminate, and
delimiter facets.

Reads input string value. Uses
fieldWidth, nullTerminate, and
delimiter facets .

Byte Writes raw binary byte value. Reads raw byte value.

Word Writes raw binary 2 byte value.
Uses bigEndian facet to define byte
order.

Reads raw 2 byte value. Uses
bigEndian facet to define byte order

Integer Writes raw binary 4 byte value.
Uses bigEndian facet to define byte
order.

Reads raw 4 byte value. Uses
bigEndian facet to define byte order.

None

Float Writes raw binary 4 byte float value.
Uses bigEndian facet to define byte
order.

Reads raw 4 byte float value. Uses
bigEndian facet to define byte order.

String Not used (same as None). Not used (same as None).

Byte Not used (same as None).

Word Not used (same as None).

Integer Not used (same as None).

Treats the input data as a decimal
string and attempts to convert it to an
integer value. May need to set
fieldWidth, nullTerminate, or delimiter
facet in order to parse the received
string properly.

Ascii

Float Not used (same as None). Same as above except it will convert
the string to a float value.

String Not used (same as None). Not used.

Byte Converts the least significant 8 bits
of the value to an asciiHex string.
For example:

255 —> “ff”
256 —> “00”
257 —> “01”

Treats the input data as a decimal
string and attempts to convert it to an
integer value. May need to set
fieldWidth, nullTerminate, or delimiter
facet in order to parse the received
string properly.

Word Same as above, except uses 16
bits or 2 bytes. Uses bigEndian
facet to define byte order.

Integer Same as above, except uses 32
bits or 4 bytes.

Same as above. Uses bigEndian
facet to define byte order.

AsciiHex

Float Converts the 4 byte float value to
an asciiHex string. Uses bigEndian
facet to define byte order.

Same as above except it will convert
the string to a float value. Uses
bigEndian facet to define byte order.

June 12, 2008 © 2008 Tridium, Inc Page 7 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 Defining FlexMessageBlocks

Defining FlexMessageBlocks
FlexMessageBlocks are defined by creating a collection of FlexMessageElements under an
instance of a FlexMessageBlock. All FlexMessageBlocks are defined under the frozen
“messageBlocks” slot of the FlexSerialNetwork.

Defining FlexMessages
FlexMessages are defined by creating a collection of FlexMessageBlock references and
FlexMessageElements under an instance of a FlexMessage. All FlexMessages are defined under
the frozen “messages” slot of the FlexSerialNetwork.

Checksum or CRC Message Element
Many serial protocols contain a checksum or CRC field that contains a calculated one or two-byte
value. This value is calculated from some or all of the preceding bytes of the message. The
FlexSerial driver supports the calculation of this error-checking value with the use of a Program
object. The user must understand the protocol algorithm used to calculate the error-checking value
and implement this algorithm in the “onExecute” method of the Program object. The Program
object must be defined with the following slots:
• “offset” – Integer: This is the offset within the byte array where the error-checking calculation

starts. This is automatically set based on any “cksumStart”-named marker message elements
defined in the message (see dataType on page 6).

• “byteArray” – Blob: This is the byte array of the message up to the point of this error-checking
value. This will automatically be set when the FlexSerial driver is generating the byte array for
this message.

• “results” – Integer: This slot will contain the results of the error-checking algorithm
implemented in the “onExecute” method of the Program object.

A FlexMessageElement can be defined to be an error check message element simply by specifying
the message element source ord as this Program object.

FlexRequestResponse component
A FlexRequestResponse component ties a FlexRequestMessage and a FlexResponseMessage pair
together as a request-response pair.

FlexRequestMessage component
A FlexRequestMessage component allows the user to select one of the defined FlexMessages under
the FlexSerialNetwork/messages component to be a request message. When FlexMessage is
selected, an instance of the message will be created as a child with any FlexMessageBlocks defined
in the FlexMessage expanded FlexMessageElements so that this FlexMessage instance only
contains FlexMessageElements.
Table 3 FlexRequestMessage slots

Frozen Slots Descriptions
message Allows user to select a defined FlexMessage to be this request message

facets Allows user to specify a “showAscii” facet to allow ascii formatted display of
the following byteArray slot.

byteArray This is the byte array form of this request message

June 12, 2008 © 2008 Tridium, Inc Page 8 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 FlexResponseMessage component

FlexResponseMessage component
A FlexResponseMessage component allows the user to select one of the defined FlexMessages
under the FlexSerialNetwork/messages component to be a response message. When FlexMessage
is selected an instance of the message will be created as a child with any FlexMessageBlocks
defined in the FlexMessage expanded FlexMessageElements so that this FlexMessage instance
only contains FlexMessageElements.
Table 4 FlexResponseMessage slots

Frozen Slots Descriptions
message Allows user to select a defined FlexMessage to be this response message.

facets Allows user to specify a “showAscii” facet to allow ascii formatted display of the
following byteArray slot.

byteArray This is the byte array form of this response message

elementSelect This allows the user to select one of the message elements of this response, to
be the “primary” value of the response. This is primarily used when this
response is a part of a FlexProxyExt “pollMessage” FlexRequestResponse
component. It will be this response message element that will be stored in the
readValue slot of the proxyExt.

errorCheck This is an ord that will point to an “errorCheck” Program object. If this ord is null,
no error checking will be done on the response message. The defined Program
object will be initialized with both the request and response byte arrays prior to
invoking the “onExecute” method of the Program object. The “onExecute”
method will perform required logic to validate that the response is valid for the
request. The Program object must have a “results” String slot that will contain
the results of this error check algorithm. If everything is “Ok” the results slot
should be set to “Ok”. If there is an error of some type, the results slot should
be set to a string that describes the error. This error string will be displayed in
the faultCause slot of the FlexProxyExt.

FlexUnsolicitedMessage component
A FlexUnsolicitedMessage is typically used to decode an unsolicited message byte array exposed
in the FlexSerialNetwork. This message component must be used as a child of a
FlexSerialNetwork.
Table 5 FlexUnsolicitedMessage slots

Frozen Slots Descriptions
message Allows user to select a defined FlexMessage to be used to decode this

message.
facets Allows user to specify a “showAscii” facet to allow ascii formatted display

of the following byteArray slot.
byteArray This is the byte array that is to be decoded. It is typically linked to the

unsolicitedByteArray of the parent FlexSerialNetwork.
elementSelect This property is not used in this application.

June 12, 2008 © 2008 Tridium, Inc Page 9 of 24

NiagaraAX FlexSerial Driver Guide Message Definition Concepts
 FlexSendMessage component

Frozen Slots Descriptions
messageValidate This is an ord that will point to an “errorCheck” Program object. If this ord

is null, no error checking will be done on the message and the byte array
will be decoded. The defined Program object’s responseByteArray will
be initialized prior to invoking the “onExecute” method of the Program
object. The “onExecute” method will perform required logic to validate
that the response is valid for the request. The Program object must have
a “results” String slot that will contain the results of this error check
algorithm. If everything is “Ok” the results slot should be set to “Ok”. If
there is an error of some type, the results slot should be set to a string
that describes the error. If the results is “Ok” then the byte array will be
decoded.

unsolicitedMessage
Received

This is a Topic that is fired when this object decodes a valid message.

FlexSendMessage component
A FlexSendMessage is typically used to send a message either manually or on an event. This
message component must be used as a child of a FlexSerialNetwork. It can be used in conjunction
with the FlexUnsolicitedMessage to send a reply to an unsolicited message.
Table 6 FlexSendMessage slots

Frozen Slots Descriptions
message Allows user to select a defined FlexMessage will be sent when the send action

is invoked.
facets Allows user to specify a “showAscii” facet to allow ascii formatted display of

the following byteArray slot.
byteArray This is the sent byte array.
enable This is a StatusBoolean input that will enable/disable the sending of this

message.
Send This is an Action that will cause the message to be sent if the enable input is

true.

SerialRequest component
A SerialRequest can be used to send a string request and receive a string response.
This message component must be used as a child of a FlexSerialNetwork.
Table 7 SerialRequest slots

Frozen Slots Descriptions
Request This is a StatusString input. When this input changes the message will

automatically be sent.
addFrameStart If set to true, the driver will add bytes defined in the frameStart

MessageBlock to the request message before sending.
addFrameEnd If set to true, the driver will add bytes defined in the frameEnd

MessageBlock to the request message before sending.
Response This is a StatusString output. The response received will be exposed here.
responseExpected If set to true, the driver will wait for a response to the request message

sent.
addFrameStart If set to true, the driver will remove the bytes defined in the frameStart

MessageBlock from the response message.

June 12, 2008 © 2008 Tridium, Inc Page 10 of 24

NiagaraAX FlexSerial Driver Guide Unsolicited Messages
 SerialSend component

Frozen Slots Descriptions
stripFrameEnd If set to true, the driver will remove the bytes defined in the frameEnd

MessageBlock from the response message.
SendRequest Invoking this Action that will cause the message to be sent.

SerialSend component
A SerialSend can be used to send a string request.
This message component must be used as a child of a FlexSerialNetwork.
Table 8 SerialSend slots

Frozen Slots Descriptions
In This is a StatusString input. When this input changes the message will

automatically be sent.
addFrameStart If set to true, the driver will add bytes defined in the frameStart MessageBlock

to the request message before sending.
addFrameEnd If set to true, the driver will add bytes defined in the frameEnd MessageBlock to

the request message before sending.
Send Invoking this Action that will cause the message to be sent.

Unsolicited Messages
The FlexSerial driver can also be used to receive and process unsolicited messages. When an
unsolicited message is received it is exposed in the unsolicitedMessage property of the
FlexSerialNetwork as a StatusString. It is also exposed in the unsolicitedByteArray property as a
Blob byte array. After the message is written to these two properties it fires the
FlexSerialNetwork’s unsolicitedMessageReceived topic. The FlexUnsolicitedMessage component
can be used to decode the unsolicited message. KitControl’s string processing components may
also be used to decode the unsolicited message.

Notes on Building Messages
The following notes relate to building messages, and include the following topics
• Naming of Elements
• Updating Message Instances
• Show Instance Action
• AsciiHex Encode with showAscii Facet

Naming of Elements
MessageBlocks can be used to build up reusable fragments to later piece together by defining
messages in the Message Manager. When you Add a new element (FlexMessageElement) to a
MessageBlock, the name of the element defaults to the type of element that you are adding, for
example, “FlexByteElement”.
Within the boundaries of a single MessageBlock, autonaming is OK, as duplicate names are
prevented (e.g., another added FlexByteElement is autonamed “FlexByteElement1”). However, be
aware that issues can occur when element names across MessageBlocks are not unique—as actual
messages are comprised of one or more MessageBlocks and one or more additional elements. So,

June 12, 2008 © 2008 Tridium, Inc Page 11 of 24

NiagaraAX FlexSerial Driver Guide Notes on Building Messages
 Updating Message Instances

when a message is created, it takes copies of MessageBlocks and adds their components
(elements), which may result in a “duplicate name exception” and incomplete message being sent.
Therefore, it is recommended that when creating elements (FlexMessageElements), that you give
them unique names, that is unique across the various MessageBlocks.

Updating Message Instances
After updating the configuration of a message in the Message Manager (including but not limited
to element name, value or encoding changes), be aware that any objects that are configured to use
that message are using a stored instance of that message—and therefore updates are not automatic.

For this reason, after updating one or more messages, you should invoke the right-click “Update
Message Instances” action on its parent MessageFolder, or click the equivalent “Update Messages”
button in the Message Folder Manager view.

In the same way, if you have modified a MessageBlock that has already been added to a message,
you should invoke the “Update Block Selects” action on its MessageFolder.

Show Instance Action
Note that Request and Response messages include an action that allows either showing or hiding
the message Instance. If you invoke the “Show Instance” action, then the instance of the message
(as sent out on the wire) is shown in the message’s property sheet.

The Instance is broken down into each of the individual message elements, each one as a slot. This
feature can be helpful for both troubleshooting and verifying how the message is created from the
various MessageBlocks and FlexMessageElements.

June 12, 2008 © 2008 Tridium, Inc Page 12 of 24

NiagaraAX FlexSerial Driver Guide Notes on Building Messages
 AsciiHex Encode with showAscii Facet

AsciiHex Encode with showAscii Facet
Note that in some cases a manufacturer may provide message examples in hex format, but require
messages to be sent on the wire in “ASCII hex” format. Using defaults, this can be somewhat
confusing to verify or debug in the message property sheet.
For example, say the message “FF A6” must be sent out in ASCII hex. When you build each of the
two message elements, you must enter a decimal value, which you pre-converted to the decimal
values 255 and 166, respectively. Since the vendor requires ASCII hex, you set the “encode”
property in each of the elements to “AsciiHex”.
When the property sheet of that message is viewed, the information sent (ByteArray) reflects this
extra encoding, instead of the expected hex value of “FF A6”. So in this case you see the more
cryptic “46464136”, as shown below.

In order to verify, you must use a calculator or conversion chart to make sure that “46464136”
reflects the desired hex number (in this case FF A6) in ASCII format.

However, a better solution is to add a facet named “showAscii”, of type boolean, to the message,
which perform this same conversion—provided that you set this facet’s value to true. Note that
“showAscii” does not appear in the drop-down list of facets—you must type it in. Below is the
property sheet of this same example message after adding the “showAscii” facet.

If this “showAscii” facet is missing or set to false, then the ASCII hex format is shown instead.

June 12, 2008 © 2008 Tridium, Inc Page 13 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Examples

Modbus RTU Protocol
Note: The examples include here are from a station named “flexmodbusrtu” that is also provided
along with this document. This example station uses a ModbusSlave driver using COM4. The
FlexSerial driver is using COM1. A RS-232 cable is connected between COM1 & COM4.
Modbus RTU protocol is a request-response binary protocol and message framing is defined by
silent time between messages. A message start is defined as the first byte received after a silent
time of at least 3.5 character times. A message end is defined as 3.5 character silent time after data
has been on the wire. Message is then defined as follows:
start device addr function data crc end
silent 8 bits 8 bits n bytes 16 bits silent

As can be seen this protocol does not have a fixed sequence of bytes that frame the message but is
framed by silent time on the wire.

Define Message framing in FlexSerialNetwork
Since there is no fixed sequence of bytes that frame the message leave the “frameStart” and
“frameEnd” messageBlocks empty.

And since the message is framed by receive silent time, set the “maxReceiveSilentTime” property
of the FlexSerialNetwork to 50 milliseconds.

June 12, 2008 © 2008 Tridium, Inc Page 14 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Define Crc message block
Modbus RTU protocol message uses a 16-bit CRC error-checking field in the message. Code
examples of the CRC algorithm are provided in the Modbus Protocol Reference Guide provided on
the modbus.org web site. In this example this algorithm has been implemented in the Program
object at: station:|slot:/Drivers/FlexModbusRtu/messages/crcCalc

Since the CRC is part of all messages and it will always be associated with the same Program
object it is best to define this as a MessageBlock. To do this use the MessageBlockManager view
of the MessageBlocks component under the FlexSerialNetwork, use the New button of the view to
add a new message block named “crc” and give it a description if you desire.
The view should now look something like this:

Now double-click on the crc message block in the Nav tree to bring up the MessageManager view.
Use the New button to create a new FlexMessageElement define this message element as follows:

Data type is chosen to be word because this is a 16 bit value. Value is a “don’t care” because it
will be filled in from the source Program object. Encode is none because this will be transmitted as
a raw binary value. A “bigEndian” = true facet is set because sent with most significant 8 bits of
the crc sent first. Use the Component Chooser to select desired Program object.

June 12, 2008 © 2008 Tridium, Inc Page 15 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Define a PingMessage
This ping message will be used by the FlexSerialDevice to monitor the communication status of the
device. In this example, we will be reading holding register 0. The Modbus message used to read
a holding register has the following format:
device address Address of this device
function 03
register address hi byte 00
register address lo byte 00
no. of registers hi byte 00
no. of registers lo byte 01
crc hi byte xx
crc lo byte xx

To create this message double-click on the FlexSerialNetwork/messages component in the Nav tree
to open the MessageFolderManager view. Use the New button to create a new FlexMessage
named “pingMessage”. Then double-click on the “pingMessage” in the Nav tree to open the
FlexMessageManager view. Use the New button to create FlexMessageItems as shown below:

Note on the address message element: The address element is defined with a relative ord
definition. Since an instance of this ping message is going actually reside as a child of the
FlexSerialDevice, and this same ping message will be likely be used in all FlexSerialDevice
instances, the source for the address is the address property of the parent FlexSerialDevice, which
is defined an ord as: “slot:../address”

Next use the New button to add a new FlexMessageBlock Select named “crc”.

Select “crc” dataType and press OK.

June 12, 2008 © 2008 Tridium, Inc Page 16 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Now the pingMessage should look like this:

Define a PingResponse Message
The response to a Modbus read holding register message has the following format:
device address should be same as request
function 03 same as request
byte count 02 in this case
data hi byte nn
data lo byte nn
crc hi byte xx
crc lo byte xx

Using a procedure similar to what was used to define the PingMessage create a “pingResponse”
message defined as follows:

Since this message is going to be used as a response message definition, the value of each message
element doesn’t matter. These values will actually be set when a real response message is decoded
into this message structure.

Create a FlexSerialDevice and define its PingMessage
Use the FlexDeviceManager view of the FlexSerialNetwork to add a new FlexSerialDevice with an
address of “1”. The Nav tree should now look something like this:

June 12, 2008 © 2008 Tridium, Inc Page 17 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

The Init Message and Ping Message are FlexRequestResponse frozen component slots of the
device.
• The Init Message is used to define a message that needs to be sent to the device to

before other communications can be processed. In this case, no Init Message is needed
and left un-initialized.

• The PingMessage is used to define the request and response FlexMessages to be used
when this device is to be pinged.

Define the PingMessage Request message
Expand the Ping Message and double-click on the request in the Nav tree. This will open the
property sheet of the request FlexRequestMessage.

Initially the Message and Byte Array will be blank and the instance will not exist.
Click the pull-down of the Message property and select the pingMessage created in the earlier step.
Note: all of the messages defined in the FlexSerialNetwork Messages folder will appear in this
pull-down.

Once the message is selected and saved an instance FlexMessageBlock should appear in the
property sheet. At some point data in the Byte Array property will appear indicating that a ping
message has actually been sent to the device.

Define the PingMessage Response message
Using a procedure similar to the above double-click on the Response and select the
“pingResponse” as the response message.

You will notice that the Response structure also has Element Select and Message Validate
properties. These properties are primarily used in defining Poll Message responses under
FlexProxyExt and can be left un-initialized here. If the device responds to a ping message, it is
typically considered to be OK.

June 12, 2008 © 2008 Tridium, Inc Page 18 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Assuming that the station is running in a JACE that is actually connected to a Modbus RTU device
with this address you should be able to force a Ping message to the device and see a request and
response and the device will have the {down} flag cleared.
In the example “flexmodbusrtu” station, the there is a modbusSlave driver also running using
COM4. This FlexSerialNetwork is using COM1, so connecting COM1 to COM4 should complete
the communications path.

Control Points and FlexProxyExt Usage
Most of the register data from a Modbus device will be exposed in Niagara using control points
with FlexProxyExts. The method to create and setup these control points is consistent with other
AX driver implementations. In this example we will need to setup the request and response
messages used by the FlexProxyExt to read the holding register defined by the address property of
the FlexProxyExt. This request-response pair is selected by the FlexProxyExt’s “pollMessage”
property.

Define Read Holding Register Message
The read holding register message that will be used by a proxy extension is almost identical to the
ping message defined earlier. The Modbus message structure is the same but the source ord used
to get the device address is different since the proxy extension is several layers deeper in the station
database. Another difference is the fact that the register address to be read needs to be sourced
from a property of the proxy extension.
Since this read holding register message almost identical to the ping message, using the Nav tree,
select the “pingMessage” and duplicate it, renaming it to “readHoldingRegister”.

Next double click on “readHoldingRegister” in the Nav tree to open the FlexMessageManager.
Change the source property of the address and startAddress message elements as shown below.

Note the address message element source ord is defined as a relative ord and makes use of a Bql
statement. This message element’s value needs to be replaced with the address property value of

June 12, 2008 © 2008 Tridium, Inc Page 19 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

the parent FlexSerialDevice. The FlexProxyExt has a “getFlexDeviceAddress” method, which will
return content of the address property of the parent FlexSerialDevice. The
“slot:../bql:flexDeviceAddress” ord will invoke the “getFlexDeviceAddress” method on the parent
FlexProxyExt.

The startAddress message element source ord is also defined as a relative ord. This message
element’s value needs to be replaced with the address property of the parent FlexProxyExt.

Define Read Holding Register Response Message
The read holding register response message is actually identical to the pingResponse defined
earlier, but to keep things consistent we are going to duplicate the pingResponse message and name
it “readHoldingResponse”.

Create a NumericWritable Point and Setup PollMessage
Using the Point Manager view of the FlexSerialDevice create a NumericWritable point and name it
“hr0000” with an address of 0. The Nav tree should now appear like this:

The next step is to select the message to be used as the pollMessage/request and the
pollMessage/response.

Double-click on the pollMessage/request in the Nav tree to open its property sheet. In the message
pull-down select “readHoldingRegister”.

Double-click on the pollMessage/response in the Nav tree to open its property sheet. In the
message pull-down select “readHoldingResponse” and press the save button.

Now press the “refresh” button. This will allow selecting one of the message elements of the
readHoldingResponse message to be the value that will be processed as the readValue of the

June 12, 2008 © 2008 Tridium, Inc Page 20 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

FlexProxyExt. This value in turn will be exposed as the out property of the parent control point.
For the readHoldingResponse message the “value” message element is this value.

Use the Element Select pull-down and select “value”.

The pollMessage is now setup and the driver should be able to generate a valid Modbus RTU
message to read holding register 0 when the parent control point is subscribed.

Define a Write Holding Register Message
The write holding register message that will be used by a proxy extension will model a Modbus
RTU Preset Single Register message. This message has the following byte format:
device address address of this Modbus device
function 06 preset single register function
register hi byte nn
register lo byte nn
preset data hi byte dd
preset data lo byte dd
crc hi byte xx
crc lo byte xx

Using methods described earlier create a “writeHoldingRegister” message like this:

Note that the value message element is sourced from “slot:../writeValue/value”. The value to be
written to the Modbus register will come from the FlexProxyExt’s writeValue property. The
writeValue in this case is a StatusNumeric type. Specifying “writeValue/value” in the source ord
will extract only the numeric value.

June 12, 2008 © 2008 Tridium, Inc Page 21 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus RTU Protocol

Define a Write Holding Register Response Message
The write holding register response message used by a proxy extension will model a Modbus RTU
Preset Single Register Response message. This message has the following byte format:
device address address of this Modbus device
function 06 preset single register function
register hi byte nn
register lo byte nn
preset data hi byte dd
preset data lo byte dd
crc hi byte xx
crc lo byte xx

Using methods described earlier create a “writeHoldingResponse” message like this:

Setup NumericWritable Point’s WriteMessage
Open the property sheet view of the Hr0000 NumericWritable point’s WriteMessage’s Response
component. Select “writeHoldingResponse” as the Message property value.

Now the “hr0000” NumericWritable point is setup to write values to the addressed Modbus
register. If you invoke the “set” action on the point, you should see a Preset Single Register
message being sent to the Modbus device.

June 12, 2008 © 2008 Tridium, Inc Page 22 of 24

NiagaraAX FlexSerial Driver Guide Examples
 Modbus ASCII Protocol

Add Message Validation to Response Messages
The “messageValidate” property of the Flex Response Message is the hook that is used to provide
error checking of response messages. This “messageValidate” property is an ord will point to a
Program object.
The Program object must have the following slots:
1. “requestByteArray” of type Blob
2. “responseByteArray” of type Blob
3. “results” of type String
This Program object must be coded to determine if the response byte array is valid for the request
byte array. If the response is valid, the “results” slot must be set to “Ok”. If the response is not
valid, it must set the “results” slot to a short string that describes the error.

The FlexSerial driver will automatically set the request and response byte array values in the
messageValidate Program object, invoke its execute method, and read the results value. If the
results is not “Ok”, the control point’s status will be set to fault and the results string will appear in
the faultCause property of the FlexProxyExt.

In the “flexModbusRtu” example station, there is an “messageValidate” Program object at:
”slot:/Drivers/FlexModbusRtu/messages/ErrorCheck”.

Modbus ASCII Protocol
Modbus ASCII protocol is a request-response Ascii protocol and message framing is defined by a
“:” start character and a 0x0d, 0x0a (carriage return, line feed) frame end sequence. All data
between the frame start and frame end is encoded as Ascii Hex data. Message is then defined as
follows:

Start device addr function data lrc end
‘:’ “nn” “ff” n ascii hex bytes “nn” 0x0d, 0x0a

NOTE: This document does not detail the application of the FlexSerial driver to communicate to
interface to a ModbusAscii device. There is an example implementation of a station,
“flexModbusAscii”, that does provide an implementation that communicates to ModbusAscii
devices. This example station uses a ModbusSlave driver using one serial port and the FlexSerial
driver is using another serial port. A RS-232 cable is connected between the two serial ports.

FlexWeatherStationExample
This example uses two FlexSerialNetworks. One network is used to simulate a weather station
device that periodically sends the current temperature, humidity, wind speed, and wind direction
out the serial port. The other network then receives this message unsolicited and exposes the
received values.

The format of the message is a string as that starts with a “#” followed by the temperature value,
humidity value, wind speed value, and wind direction with a comma delimiter between each value.
The message is terminated with a carriage return (0x0d).

Example: #72.8,78.4,12.8,230.4

June 12, 2008 © 2008 Tridium, Inc Page 23 of 24

NiagaraAX FlexSerial Driver Guide Document Change Log
 FlexWeatherStationExample

Document Change Log
• Updated: June 12, 2008

Added more details and notes about the “value” and “encode” properties for FlexMessageElement
type components, as given in Table 1 starting on page 5. Related to this, a new section was added:
“FlexMessageElement Encode property usage” on page 7. Added a “Notes on Building
Messages” section starting on page 11. Removed “BETA DRAFT” from cover and page headers.
Document page count increased from 20 to 24, and document currently remains in PDF format only.

• BETA DRAFT: May 2, 2007
Initial draft document, available in PDF format only.

June 12, 2008 © 2008 Tridium, Inc Page 24 of 24

	FlexSerial Driver Overview
	Installation
	Message Definition Concepts
	FlexMessageElement
	FlexMessageBlock
	FlexMessage
	Message Framing
	Defining FlexMessageElements
	FlexMessageElement Properties
	FlexMessageElement Encode property usage

	Defining FlexMessageBlocks
	Defining FlexMessages
	Checksum or CRC Message Element
	FlexRequestResponse component
	FlexRequestMessage component
	Frozen Slots

	FlexResponseMessage component
	Frozen Slots

	FlexUnsolicitedMessage component
	Frozen Slots

	FlexSendMessage component
	Frozen Slots

	SerialRequest component
	Frozen Slots

	SerialSend component
	Frozen Slots

	Unsolicited Messages
	Notes on Building Messages
	Naming of Elements
	Updating Message Instances
	Show Instance Action
	AsciiHex Encode with showAscii Facet

	Examples
	Modbus RTU Protocol
	Define Message framing in FlexSerialNetwork
	Define Crc message block
	Define a PingMessage
	Define a PingResponse Message
	Create a FlexSerialDevice and define its PingMessage
	Define the PingMessage Request message
	Define the PingMessage Response message

	Control Points and FlexProxyExt Usage
	Define Read Holding Register Message
	Define Read Holding Register Response Message
	Create a NumericWritable Point and Setup PollMessage
	Define a Write Holding Register Message
	Define a Write Holding Register Response Message
	Setup NumericWritable Point’s WriteMessage
	Add Message Validation to Response Messages

	Modbus ASCII Protocol
	FlexWeatherStationExample

	Document Change Log

